Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: A Randomized Trial

Julie Lasselin, Michael T Treadway, Tamara E Lacourt, Anne Soop, Mats J Olsson, Bianka Karshikoff, Sofie Paues-Göranson, John Axelsson, Robert Dantzer, Mats Lekander

Cite this article as: Julie Lasselin, Michael T Treadway, Tamara E Lacourt, Anne Soop, Mats J Olsson, Bianka Karshikoff, Sofie Paues-Göranson, John Axelsson, Robert Dantzer, Mats Lekander, Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: A Randomized Trial, Neuropsychopharmacology accepted article preview 13 September 2016; doi: 10.1038/npp.2016.191.

This is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication. NPG are providing this early version of the manuscript as a service to our customers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Received 5 August 2016; accepted 1 September 2016; Accepted article preview online 13 September 2016

© 2016 Macmillan Publishers Limited. All rights reserved.
Lipopolysaccharide alters motivated behavior in a monetary reward task: a randomized trial

Running title: Lipopolysaccharide effects on motivation

Julie Lasselin, Ph.D.a,b,c,*, Michael T Treadway, Ph.D.d, Tamara E Lacourt, Ph.D.e, Anne Soop, M.D. Ph.D.f, Mats J Olsson, Ph.D.a, Bianka Karshikoff, Ph.D.a,b, Sofie Paues-Göranson, M.D.f, John Axelsson, Ph.D.a,b,g, Robert Dantzer, Ph.D.e, Mats Lekander, Ph.D.a,b,g

a Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden

b Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden

c Institute of Medical Psychology and Behavioral Immunobiology, Universitätsklinikum Essen, Hufelandstr. 55, 45 122 Essen, Germany

d Department of Psychology, Emory University, 36 Eagle Row, 30322, Atlanta, GA, USA
© 2016 Macmillan Publishers Limited. All rights reserved.
Abstract

Inflammation-induced sickness is associated with a large set of behavioral alterations, but its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in twenty-one healthy human subjects, in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials versus low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials, but this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness.
Thus, despite its association with energy saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile.
Introduction

Systemic inflammation is associated with a series of behavioral alterations, called “sickness behavior” (Dantzer et al., 2008). Sickness behavior is characterized by alterations in motivational priorities, since fighting pathogens and taking care of the sick body predominate over other homeostatic and reproductive goals (Aubert, 1999). Motivated behavior depends on sensitivity to reward (or pleasure) and incentive motivation (i.e., willingness to expend effort in order to obtain a reward) (Berridge et al., 2009). Animal studies have shown apparent decreased sensitivity to reward or anhedonia during immune activation, such as after administration of lipopolysaccharide (LPS) (Aubert, 1999; Larson, 2002). Additional preclinical studies indicate however that inflammation-induced motivational changes are characterized by a reduction in incentive motivation, rather than a decrease in sensitivity to reward (Anisman et al., 1998; De La Garza et al., 2005; Merali et al., 2003; Nunes et al., 2014; Vichaya et al., 2014). These observed changes in motivation can result from changes in striatal dopamine function (Miller and Raison, 2015) that plays a critical role in willingness to expend effort for reward in effort-base decision-making paradigms (Salamone et al., 2007; Wardle et al., 2011). Clinical studies report attenuated striatal response to rewarding outcomes after an inflammatory stimulus (Capuron et
al, 2012; Eisenberger et al, 2010; Felger and Miller, 2012). Despite all these data, the motivational alterations that are caused by the activation of the immune system have not been characterized in humans.

At the subjective level, fatigue and sleepiness are integral components of the sickness response (Dantzer et al, 2014; Harrison et al, 2009; Hermann et al, 1998), acting as strong motivational signals supporting rest and recovery. Hence, they are probably related to the motivational alterations that are associated with inflammation. The objective of the present study was therefore to characterize how inflammation impacts motivated behavior and to assess whether sleepiness, which can be easily and reliably measured with the Karolinska Sleepiness Scale (KSS) (Akerstedt et al., 2014), plays a role in the effects of inflammation. LPS was used to induce inflammation and motivation was assessed using the Effort Expenditure for Rewards Task (EEfRT) (Treadway et al, 2009). The EEfRT was originally designed as a human analogue to rodent effort-based decision-making paradigms, allowing the comparison of the outcomes obtained in human studies with those from rodent studies. In addition, this task contrasts a high-effort/high-reward mode of response to a low-effort/low-reward mode of response, together with variations in the probability and magnitude of monetary rewards. This aspect is close to natural
conditions, in which choice between different options are common. This task also allows differentiating incentive motivation (i.e., willingness to expend effort in order to obtain a reward) from sensitivity to reward. For instance, depressed patients display a decreased willingness to expend effort for reward, in particular with respect to the high-effort/high-reward trials, combined with a weaker effect of reward values on the choice for high-effort/high-reward trials (i.e., reduced sensitivity to reward cues) (Treadway et al., 2012).

Based on mouse studies using a similar task (Vichaya et al., 2014), we hypothesized that LPS administration would reduce incentive motivation, measured by a decrease in number of choices of high-effort/high-reward trials. We predicted that this effect would be stronger at lower levels of probability to win (i.e., when the energy expenditure was less worthwhile). We also expected that the sensitivity to reward would not be affected, i.e., that increase in reward magnitude would predict more choices of high-effort/high-reward trials in a similar way after exposure to LPS or saline. In order to determine whether the potential effect of LPS on reward motivation was related to sleepiness, we assessed: 1) the effect of LPS administration on reward motivation in the EEfRT; 2) the effect of sleepiness on reward motivation; and 3) the
combined effect of LPS administration and sleepiness on reward motivation.

Participants and methods

Participants

Healthy volunteers were recruited through advertisements posted at university campuses. Eligibility criteria included age 18-50, no known physiological or psychiatric disease, non-smoker, no excessive alcohol use, and body mass index 18.5-29 kg/m². Each participant underwent a medical examination by a physician. The absence of Major Depressive Disorder was verified using the M.I.N.I. International Neuropsychiatric Interview (Sheehan et al, 1998) In addition, clinical laboratory analyses (i.e., level of sodium, potassium, creatinine, transaminases, white blood cell count, hemoglobin) were performed before the inclusion to eliminate any possible medical condition.

Twenty-two volunteers (mean age: 23±4; 9 women) were included in the protocol. The sample size was determined according to previous studies showing that a sample size of n=20-25 is sufficient to measure significant immunological and behavioral changes after LPS administration (Calvano and Coyle, 2012; Hallstrom et al, 2011). None of the subjects dropped-out from the study but one subject could not complete any of the high-
effort tasks in either condition and was therefore removed from the analyses. Remuneration for participation was 3 500 SEK (about 370€). Participants were told that they would receive 3 000 SEK for study participation and a bonus of up to 500 SEK depending on how much they would win in the EEfRT (which was presented to them as a “computer game”), but all subjects received the 500 SEK bonus remuneration at the end of the study.

The study was conducted according to ethical standards and approved by the regional ethical review board in Stockholm, Sweden (Dnr 2015/1415-32; ClinicalTrials.gov identifier: NCT02529592). All participants signed a written informed consent after a complete explanation of the study.

LPS administration protocol

The protocol was conducted in the Center for Clinical Research at Danderyd hospital, Stockholm, Sweden in February-April 2015. A double-blinded, placebo-controlled, cross-over design was used. The subjects were randomized allocated by the physician (simple randomization using sealed envelopes) to receive either an LPS injection (*Escherichia coli* endotoxin, Lot HOK354, CAT number 1235503, United States Pharmacopeia, Rockville, MD, USA) of 2 ng/kg body weight (dissolved in 0.9% NaCl) or the same volume of physiological saline (0.9% NaCl) on
the first session of the study, between 8:30-9:30AM. After 3-4 weeks of wash-out, allowing the elimination of residual effects of LPS administration and women to be in a similar menstrual cycle phase, the second session occurred in which subjects were assigned the reverse treatment.

All volunteers and research staff were blinded, except the physician involved in the study for security purposes.

Body temperature, cytokine concentrations, and sickness symptoms

Tympanic temperature was measured before and 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 5h and 7h after the injection.

Blood samples were drawn before the injection and 1h, 1.5h, 2h, 3h, 4h, 5h and 7h after the injection. Cytokine plasma concentrations of the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-8 were assessed using high-sensitivity multiplex (Human Mag Luminex Performance Assay, LHSCM000, LHSCM206, LHSCM208, LHSCM210, RnD Systems, MN, USA). Logarithm-transformed concentrations of IL-6 are reported in the current study as an index of cytokine production. Four blood samples were missed because of technical constraints (two in each condition). The average of the two values
of the time points just before and just after, or the value just after (when baseline value was missing), was then used.

The presence and intensity of headaches and nausea were assessed by the caregiver at the same time points that body temperature on a scale ranging from 0 (not at all) to 10 (very intense). In addition, sickness symptoms were assessed using the Sickness Questionnaire (SicknessQ) before, 1.5h, 3h, 5h and 7-7.5h after the injection. The SicknessQ comprises 10 items that assess several aspects of sickness at the time when the questionnaire is completed with a total score ranging from 0 (no symptom) to 30 (very high sickness symptoms) (Andreasson et al., 2016). The SicknessQ was completed by the subject except 1.5h after the injection, when the caregiver conducted the questionnaire (because of some subjects’ weakness).

Sleepiness

Subjective sleepiness was assessed with the Karolinska Sleepiness Scale (KSS) (Akerstedt et al., 2014). The KSS measures the level of sleepiness that the subject feels ”right now”, on a 9-point scale from 1 = “extremely alert” to 9 = “very sleepy, fighting sleep, need effort to keep awake”. The KSS was completed by the subjects before, three and seven hours after the LPS/saline administration.
State anxiety, positive affect and vigor

Anxiety and positive affect were measured in order to adjust the effect of sleepiness for mood state. Anxiety was assessed using the State version of the State-Trait Anxiety Inventory (STAI) (Spielberger et al, 1979). Positive affect was assessed using the valence dimension of the Swedish Core Affect Scale (SCAS) (Vastfjall and Garling, 2007). In addition, in order to evaluate the association of sleepiness with another, overall, measurement of fatigue, vigor was measured using the activation dimension of the SCAS (Vastfjall et al, 2007).

The STAI and SCAS questionnaires were completed by the subjects before, three and seven hours after the LPS/saline administration.

Effort Expenditure for Rewards Task (EEfRT)

In the EEfRT, subjects repeatedly completed tasks in a time-span of 20 minutes in order to win monetary rewards (Treadway et al, 2009). Subjects had to choose between easy or hard tasks, which were associated with different reward levels and needed to be completed in order to win the reward. In order to complete the easy (“low-effort/low-reward”) task, subjects had to make 30 button presses in 7 seconds using the index finger of the dominant
hand. In the hard (“high-effort/high-reward”) task, subjects had to make 100 button presses in 21 seconds using the little finger of the non-dominant hand.

The monetary reward for the low-effort/low-reward trial was always 1$. The reward for the high-effort/high-reward trial was higher and varied randomly per trial between $1.24 and $4.21. In addition, a probability contingency was added (12%, 50%, 88%) so that even if they completed the trial, subjects won the monetary reward only on 12, 50 or 88 percent of the cases. The reward magnitude for the high-effort/high-reward trial and the probability of winning were presented at the beginning of each trial (see supplementary Figure S1A). After choosing between the low-effort/low-reward and the high-effort/high-reward task, subjects completed the task by pressing the respective button with the respective finger (supplementary Figure S1B). After the trial, subjects were informed whether they succeeded in the task and if they won the money reward (supplementary Figure S1C-D). The main outcome of the EEfRT task was the choice of the high-effort/high-reward mode of response. Number of high-effort trial choices in the test represented the level of effort subjects were willing to employ in order to get a higher reward (i.e., incentive motivation). The effects of reward magnitude and probability in predicting high-effort choices were also assessed.
To ensure monetary reward motivation, the subjects were told that four trials would be randomly selected among the successful trials, and the total amount won in these four trials would be used to calculate their bonus remuneration (up to 500 SEK) in a proportional way. They were also told that any cheating (e.g., using a different finger to complete the task) would be punished by not getting any reward.

The EEfRT was conducted between 4-5 hours after the LPS/saline injection, when sickness was still present in LPS-treated subjects but more severe effects (e.g., shivering, severe nausea and headache) had subsided. Preliminary experiments indicated that the task should not be conducted earlier (e.g., between 3 and 4 hours after the injection, as originally planned) as subjects were then usually too weak to perform this task.

Statistical analyses

All subjects completed the monetary reward task on each study day. However, as stated above, one subject could not complete any of the high-effort tasks in either condition and was therefore removed from the analyses. In addition, EEfRT data from one subject in the LPS condition and from two subjects in the saline condition were unavailable because of technical problems. This means that 21 subjects for whom data were available for at
least one condition were included in the analyses of the present study. In addition, two subjects were outliers (value higher than mean + 3SD) with respect to at least two inflammatory markers (baseline concentrations of one subject and peak concentrations after LPS administration of another subject). These two subjects were therefore excluded from the analyses on IL-6 data.

The effect of treatment on body temperature, plasma IL-6 concentrations and sickness symptoms (headache, nausea, SicknessQ-score) from baseline to 7 hours after the injection was assessed using repeated measurements (RM) ANOVA with treatment (LPS/saline) and time as independent variables and post hoc pairwise comparisons to assess the effect of condition at each time point. The effect of treatment on sleepiness, state anxiety, positive affect and vigor from was assessed the same way.

The effect of treatment on performance in the EEfRT (i.e., proportion of successful trials, time to completion, and button press rate) was analyzed using RM ANOVA with treatment (LPS/saline) as independent variable.

Predictive effects of LPS versus saline treatment and sleepiness on high-effort/high-reward trial choices were tested with Generalized Estimating Equation (GEE) using a binary logistic model. Within-subject variables were study day (1st/2nd session), trial of the EEfRT, reward magnitude, and probability levels, using
an exchangeable working correlation structure. The effects of condition and sleepiness on the choice of the high-effort/high-reward trial (no/yes), and the statistical mediation effect of sleepiness on the association between condition and high-effort/high-reward choice, were assessed in three separate models: (1) the first model assessed the effects of condition (LPS/saline) and its interaction with probability levels (continuous variable) and reward magnitude (continuous variable); (2) the second model assessed the effect of sleepiness (KSS scores three hours after LPS/saline administration) and its interaction with probability levels and reward magnitude; (3) the third model assessed the effect of condition and sleepiness together and their interaction with probability levels and reward magnitude. In order to adjust for mood state and sickness symptoms, state anxiety (STAI), positive affect (SCAS valence) and sickness (SicknessQ) scores measured three hours after the LPS/saline administration were added in the models as covariates. These analyses were repeated entering the order of the LPS injection (on 1st versus 2nd study day) in order to control for a contaminating effect of a potential unblinding. The indirect effect of sleepiness was then confirmed using the PROCESS macro (http://www.processmacro.org/) developed by A.F. Hayes (Hayes, 2013), using average proportions of high-effort/high-reward task choices. These analyses were repeated
using the peak concentration of IL-6 (i.e., individual highest logarithm concentration) observed between baseline and 5 hours after the LPS/saline injection instead of treatment as independent variable to confirm that the effects of LPS administration could be attributed to inflammation. The peak of IL-6 concentration was used instead of a fixed time point (e.g., at the time of the EEfRT) as it represents the largest effect of LPS administration and reflects how much cytokines would have impacted the brain.

When significant interaction with reward magnitude or probability levels was found, exploratory post hoc GEE analyses were performed to investigate at which level of probability (12%, 50%, 88%) or size of the monetary reward (low: <2$, medium: 2$-3$, high: >3$) the respective effect appeared.

All statistical analyses were performed using IBM SPSS statistics 22 with a degree of significance set at p < .05.

Results

Validation of the LPS administration model

LPS, but not saline, administration led to significant increases in body temperature, IL-6 concentrations, and sickness symptoms ([Figure 1](#figure1), see [Table S1](#tableS1) for detailed statistics). In particular, the increase in body temperature and IL-6 concentrations was observed between 1h and 3h after the LPS
injection. The effects were stronger than what has been previously reported in studies using lower dose of LPS from the same lot (e.g., 0.8 ng/kg bw; see for instance Engler et al., 2016) but similar to what has been found in studies using a dose of 2 ng/kg bw from a different lot (e.g., Suffredini et al., 1999; Calvano and Coyle, 2012). Headache and nausea severity peaked 1.5h after LPS injection and high levels of sickness symptoms were measured 1.5 and 3h after the injection. The monetary reward task was performed in the descending phase of the body temperature, cytokine and sickness responses, but when the effects of LPS administration were still present (4-5h after the injection) (Figure 1).

Effect of LPS administration on sleepiness, state anxiety, positive affect and vigor

Sleepiness was affected by time (p < .001) and condition (p = .045), and a trend for an interaction between time and condition (p = .08) was found (for detailed statistics, see Table S1). Sleepiness was significantly increased 3 hours after LPS in comparison to saline administration (Figure 1).

State anxiety, positive affect and vigor were affected by time and condition, indicated by significant time x condition interactions (Table S1). State anxiety increased while positive
affect and vigor decreased after LPS, but not saline, administration (Figure 1). The increase in state anxiety was slightly higher than what was observed in previous studies using a lower dose of LPS from the same or different lot (e.g., Engler et al., 2015; Karshikoff et al., 2015; Lasselin et al., 2016).

Three hours after LPS administration, increased sleepiness was inversely correlated with vigor (r=-.510, p=.018) and positive affect (LPS: r=-.494, p = .023).

Effects of LPS on EEfRT performance

Compared to saline injection, LPS-treated subjects had a reduced success rate in the low-effort trials (F(1,17)=4.5, η²=.21, p=.049) but performed better when engaged in high-effort trials (F(1,17)=7.9, η²=.32, p=.012) (Figure 2A). They were also faster in completing the high-effort trials (F(1,17)=8.0, η²=.32, p=.011) and this was due to an increased button press rate (F(1,17)=12.1, η²=.42, p=.003) (Figure 2B). No such difference was found in the low-effort trials (η²=.12, p=.15 and η²=.10, p=.18) (Figure 2B). These results indicate that LPS enhanced behavioral performance in high effort/high reward trials.

Effect of LPS and sleepiness on high-effort/high-reward choices
Table 1 shows the results of the GEE models assessing the effects of 1) condition (model 1), 2) sleepiness (model 2), 3) condition and sleepiness together (model 3) on the choice of high-effort/high-reward trial (yes/no). Interactions with probability levels and reward magnitude on high-effort/high-reward choice are also displayed.

The three models show a negative effect of trial order, indicating that subjects made overall less high-effort/high-reward choices at the end of the task in comparison to the beginning. In addition, increase in reward magnitude and in probability levels significantly predicted more high-effort/high-reward choices. This means that the participants were more likely to engage in high-effort/high-reward trials when the reward or the probability to win were higher.

In the first model (Table 1), there was a significant positive interaction between LPS administration and probability to win. The direction of the interaction indicates a greater association between increased probability levels and high-effort/high-reward choices in the LPS condition, in comparison to saline administration. In other words, in comparison to the saline condition, LPS-treated subjects were more likely to choose the high-effort/high-reward trials when the probability to win was higher (Figure 3A). Similar associations were found when
entering peak IL-6 concentration instead of condition as independent variable in the model (peak IL-6 x probability, B = .006 (.003), p = .036) (see Table S2, GEE model 1 for detailed statistics).

When assessing the effect of sleepiness, a similar interaction effect as in the first model was found with probability levels (model 2 in Table 1). This indicates that the more sleepy the subjects felt, the more likely they were to engage in high-effort/high-reward trials when the probability level was higher (Figure 3B).

When assessing the effect of LPS administration and sleepiness together (model 3 in Table 1), the interaction between LPS and probability was no longer significant, while the interaction between sleepiness and probability levels remained significant. This result indicates that the observed interaction between LPS administration and probability levels on high-effort task choice was statistically mediated by sleepiness. This indirect effect of sleepiness x probability on the association between LPS x probability and high-effort task choices was confirmed using the PROCESS macro (indirect effect coefficient: 0.32; 95% confidence interval +/- 0.08). Similar relationships were found when replacing condition by peak IL-6 concentration as independent variable (see Table S2; GEE model 3: peak IL-6 x
Probability, \(B = .003 (.003), p = .193 \) and sleepiness x probability, \(B = .004 (.002), p = .015 \); indirect effect coefficient: \(0.17 +/- 0.04 \).

Notably, the observed associations of LPS administration and sleepiness with the choice of high-effort/high-reward trials were similar when entering the order of the LPS injection (on 1st versus 2nd study day) as covariate in the model, suggesting no contaminating effect of a potential unblinding (Table S3).

Effect of sleepiness on high-effort/high-reward choices at each level of probability

Given that a significant and independent interaction was found between sleepiness and probability levels, post hoc analyses were performed to assess the effect of sleepiness at each level of probability (12\%, 50\%, 88\%) (Table 2). These analyses revealed that higher levels of sleepiness were associated with increased number of high-effort/high-reward choices, but only when the probability to win was the highest (88\%) (Figure 3B). In other words, when the probability to win was high, individuals with high level of sleepiness made more high-effort/high-reward trial choices than individuals with low levels of sleepiness.

It should be noted that the trial effect observed in the models of the Table 1 was not significant in the high probability level (Table 2) while it was significant at the intermediate and low
levels of probability to win. This indicates that subjects made less high-effort choices in the course of the task - except when the probability to win was high.

Discussion

Systemic inflammation induced by LPS administration did not lead to a reduction in incentive motivation in young healthy adults. On the contrary, LPS increased the probability of engaging in high-effort/high-reward trials when the probability to win was high. Further analyses revealed that sleepiness was associated with this effect. Subjects feeling sleepy engaged more frequently in the high-effort/high-reward trials when the probability to win was maximal. Increase in reward magnitude predicted more high-effort/high-reward task choices, but independently of the condition (LPS or saline) and sleepiness, meaning that sensitivity to reward remained unaffected.

As mentioned above, after LPS administration, participants chose more frequently the high-effort/high-reward tasks when the probability to win was higher in comparison to saline administration. This effect appeared to be dependent on sleepiness and largely independent of mood alterations and sickness symptoms, given that models were adjusted for scores of anxiety symptoms, positive affect and sickness. This finding supports the
notion that sleepiness (and probably also fatigue) alters motivation and related behavior, although not in the expected direction. Incentive motivation did not decrease, but rather increased, after exposure to the inflammatory stimulus in relation to sleepiness. This is opposite to previous reports on fatigue in humans that showed a shift of the effort/reward balance so that fatigued subjects are no longer motivated to engage in task performance when energy costs are perceived to outweigh predicted rewards (Boksem and Tops, 2008). The same phenomenon occurs in inflamed rodents (Merali et al, 2003; Nunes et al, 2014). However, most of these studies used high effort/high reward modes of response and did not contrast them in the same task with low effort/low reward modes of response. Our findings in LPS-treated subjects are actually consistent with the results obtained in LPS-treated mice when tested in a decision making task (Vichaya et al, 2014). LPS-treated mice increased their proportion of high effort/high reward choices despite a decrease in their total number of responses. These findings are in line with the notion that sickness is not associated with a general decrease in motivation but with a reorganization of priorities (Aubert, 1999; Aubert et al, 1997; Larson, 2002). This re-organization of priorities becomes even more apparent in a situation of contrast between different motivational objects where it leads to what has been called
“increased finickiness” (Aubert and Dantzer, 2005). Infamed subjects are still able to engage in an effort task but are more discerning in their effort allocation. This is illustrated in a recent study in humans, which showed an increased social approach after LPS administration when the target is a close individual (Inagaki et al, 2015), while immune activation is known to induce social withdrawal in other conditions (Eisenberger et al, 2010; Inagaki et al, 2012). Likewise, an early report described that rats submitted to forced wheel running and injected with LPS actually increased their effort to press a lever in order to get more rest periods, in comparison to rats injected with saline (Dantzer and Kelley, 2007; Miller, 1964). Behavioral adaptation to contextual cues also appears in fatigued subjects who are able to, at least acutely, overcome the effect of fatigue when the reward is estimated as worthwhile (Boksem et al, 2006; Boksem et al, 2008). Altogether, our results are in line with the studies mentioned above, as they indicate that incentive motivation to monetary reward was not reduced but increased in specific conditions, in the context of sickness or fatigue. Our findings show that when the probability to gain the reward is really high, sleepy subjects can still evaluate the cost/benefit balance as most favorable, and are willing to expend more effort to obtain the reward. This is contradictory to the preconceived nature of fatigue and sleepiness, but it may relate to a
need for self-stimulation in the most sleepy subjects when not allowed to sleep. An additional aspect could be that sleepiness may have affected the results via cognitive alterations (Lim and Dinges, 2010) rather than altered motivation.

In the present study, and as hypothesized from animal studies, no difference in the reward sensitivity was observed after LPS versus saline injection or in relation to sleepiness level. However, a recent study reported a significant reduction in learned reward sensitivity after LPS administration (Harrison et al., 2016). The discrepancy between these findings and the results from the present study may indicate distinct effects depending on whether contrasted rewards are presented (e.g., high versus low reward), or may indicate distinct neural representation of the reward depending on whether the pairing between the stimulus and the reward has been made during (i.e., in Harrison et al., 2016) or before (e.g., during the screening day) the state of sickness, and should be further investigated.

No reduction in task performance was measured after LPS administration. Instead, subjects treated with LPS exhibited increased performance during the high-effort tasks in comparison to subjects treated with saline. In particular, subjects treated with LPS were faster and more successful in the high-effort tasks, perhaps due to compensatory mechanisms involved in
counteracting the sickness, or a poorer estimation of the most optimal effort needed to succeed a task. Alternative explanations could be an increased sensitivity/avoidance to negative experiences after inflammatory activation, as it has been shown in rodents with respect to bitter taste (Aubert and Dantzer, 2005) or recently in humans with respect to money loss (Harrison et al, 2016). It is possible that LPS treatment reinforced negative perceptions of the task, resulting in increased irritability and speed of response. Irritability is frequent in sick individuals with systemic inflammation due to e.g., chronic obstructive pulmonary disease or congestive heart failure (Blinderman et al, 2008; Blinderman et al, 2009), but its possible involvement in motivational alterations still needs to be assessed.

A main strength of the study is the experimental randomized within-subject design with 21 subjects using a strong sickness manipulation, giving a reasonably good power to analyze main effects of sickness. The statistical mediation analyses of indirect effects were however of cross-sectional nature and larger samples sizes would be preferred. The EEfRT is a newly developed test to measure motivation and it has the advantage of being sensitive to several aspects of motivation (Treadway et al, 2012; Treadway et al, 2009; Treadway et al, 2015). However, its sensitivity to non-psychiatric conditions and sleepiness still needs to be confirmed. In
addition, the EEfRT only tests for monetary rewards and the use of a similar task to quantify motivation for social reward (e.g., positive versus threatening social cues) rather than a monetary reward would be interesting in order to understand whether the current results are generalizable across different reward natures.

In conclusion, the results of the present study show that systemic inflammation induces incentive motivational changes in young healthy adults that can be objectively assessed using alterations in behavioral performance in a monetary reward task. Importantly, the effect was associated with sleepiness and dependent on probability contingencies. We observed that increased sleepiness was related to a higher frequency of high-effort/high-reward choices, but apparently only when the probability to win was high and the effort thus worthwhile. This suggests a complex behavioral pattern during sickness that does not only include energy saving behaviors in order to promote health-related behaviors, but that allows sick individuals to be able, and sometimes even more inclined, to successfully motivate themselves in high-effort tasks when the effort is appraised as worthwhile. Futures studies are needed in order to further comprehend the effects of sickness and related fatigue on motivation.
Funding and disclosure statement: The authors declare no conflict of interest. This research was supported by the Swedish Foundation for Humanities and Social Sciences (P12–1017 to MJO), the Swedish Research Council (421–2012–1125) and Stockholm Stress Center. MTT was supported by the National Institute of Mental Health (R00MH102355). In the last 3 years, MTT has consulted for the Boston Consulting Group, Avanir Pharmaceuticals and NeuroCog. No funding or sponsorship was provided by these companies for the current work, and all views expressed herein are solely those of authors. MTT has also received honoraria and royalties related to his writing.

Acknowledgments: We would like to thank Professor H Wallén and Dr L Hållström for their help in designing the protocol and for their technical and medical support. We thank L Gabrielsson and I Hellström for help with data collection.

Supplementary information is available at the Neuropsychopharmacology website.
References:

Figure legends

Figure 1. Effect of LPS administration in comparison to saline administration
LPS administration (plain lines) significantly induced an increase in body temperature, plasma interleukin-6 (IL-6) log-transformed concentrations as well as sickness symptoms such as headache, nausea or overall sickness symptoms, in comparison to saline administration (dashed lines). Sleepiness and state anxiety were increased, while positive affect and vigor was decreased, 3h after LPS administration in comparison to saline administration. The monetary reward task (EEfRT) was performed between 4h and 5h after LPS/saline injection (shaded area), when sickness was still present in LPS-treated subjects but when the more severe effects had subsided. The EEfRT task lasted 20 minutes.

*** p < .001, ** p < .01, * p < .05 LPS versus saline condition

Figure 2. Effect of LPS versus saline administration on performance in the low-effort and high-effort trials of the EEfRT
(A) Proportion of successful trials and (B) mean button press rate per second in the low-effort and in the high-effort trials of the
EEfRT, after LPS versus saline administration. Errors bars are SEM. * p< .05; ** p < .01

Figure 3. Effect of probability levels on high-effort/high-reward choices in the EEfRT

Proportion of high-effort/high-reward choices depending on each probability level (A) after LPS versus saline administration and (B) in subjects with low (i.e. < first tertile, 5) and high (i.e., ≥ second tertile, 7) levels of sleepiness. Errors bars are SEM.
Table 1. Effect of LPS versus saline administration and sleepiness on high-effort/high-reward task choices in the EEfRT

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
<th>Model 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SD</td>
<td>p</td>
<td>B</td>
<td>SD</td>
<td>p</td>
</tr>
<tr>
<td>Repeated variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study day</td>
<td>.343</td>
<td>.169</td>
<td>.042</td>
<td>.307</td>
<td>.180</td>
<td>.089</td>
</tr>
<tr>
<td>Trial</td>
<td>-.015</td>
<td>.003</td>
<td>< .001</td>
<td>-.015</td>
<td>.004</td>
<td>< .001</td>
</tr>
<tr>
<td>Reward magnitude</td>
<td>1.420</td>
<td>.115</td>
<td>< .001</td>
<td>1.441</td>
<td>.379</td>
<td>< .001</td>
</tr>
<tr>
<td>Probability levels</td>
<td>.040</td>
<td>.005</td>
<td>< .001</td>
<td>.024</td>
<td>.011</td>
<td>.035</td>
</tr>
<tr>
<td>Effect of LPS versus saline administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPS administration</td>
<td>-.857</td>
<td>.703</td>
<td>.223</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LPS administration × Probability levels</td>
<td>.013</td>
<td>.006</td>
<td>.032</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LPS administration × Reward magnitude</td>
<td>.031</td>
<td>.123</td>
<td>.802</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Effect of sleepiness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleepiness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-.109</td>
<td>.233</td>
<td>.642</td>
</tr>
<tr>
<td>Sleepiness × Probability levels</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.004</td>
<td>.002</td>
<td>.017</td>
</tr>
<tr>
<td>Sleepiness × Reward magnitude</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.001</td>
<td>.053</td>
<td>.980</td>
</tr>
</tbody>
</table>

© 2016 Macmillan Publishers Limited. All rights reserved.
Generalized Estimating Equation (GEE) using a binary logistic model and high-effort task choice (no/yes) as dependent variable and adjusted for mood state (state anxiety and positive affect) and sickness symptoms (sicknessQ scores). Model 1 assesses the effect of LPS versus saline administration and its interactions with probability levels and reward magnitude. Model 2 assesses the effect of sleepiness (measured in both LPS and saline conditions) and its interactions with probability levels and reward magnitude. Model 3 assesses the effect of LPS versus saline administration and sleepiness together, and their interactions with probability levels and reward magnitude.

1 Saline is the condition of reference.
Table 2. Post hoc analyses of the effect of sleepiness on high-effort/high-reward task choices at each level of probability of the EEfRT

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>12% probability</th>
<th>50% probability</th>
<th>80% probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SD</td>
<td>p</td>
</tr>
<tr>
<td>Repeated variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study day</td>
<td>-.306</td>
<td>.414</td>
<td>.460</td>
</tr>
<tr>
<td>Trial</td>
<td>-.031</td>
<td>.008</td>
<td>< .001</td>
</tr>
<tr>
<td>Reward magnitude</td>
<td>.992</td>
<td>.152</td>
<td>< .001</td>
</tr>
<tr>
<td>Effect of sleepiness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleepiness</td>
<td>-.012</td>
<td>.083</td>
<td>.885</td>
</tr>
</tbody>
</table>

Generalized Estimating Equation (GEE) using a binary logistic model and high-effort task choice (no/yes) as dependent variable and adjusted for mood state (state anxiety and positive affect) and sickness symptoms (sicknessQ).
Figure 3

A. High-effort task choices (%)

- Saline
- LPS

B. High-effort task choices (%)

- Low Sleepiness
- High Sleepiness